Batch learning from logged bandit feedback through counterfactual risk minimization

نویسندگان

  • Adith Swaminathan
  • Thorsten Joachims
چکیده

We develop a learning principle and an efficient algorithm for batch learning from logged bandit feedback. This learning setting is ubiquitous in online systems (e.g., ad placement, web search, recommendation), where an algorithm makes a prediction (e.g., ad ranking) for a given input (e.g., query) and observes bandit feedback (e.g., user clicks on presented ads). We first address the counterfactual nature of the learning problem (Bottou et al., 2013) through propensity scoring. Next, we prove generalization error bounds that account for the variance of the propensity-weighted empirical risk estimator. In analogy to the Structural Risk Minimization principle of Wapnik and Tscherwonenkis (1979), these constructive bounds give rise to the Counterfactual Risk Minimization (CRM) principle. We show how CRM can be used to derive a new learning method—called Policy Optimizer for Exponential Models (POEM)—for learning stochastic linear rules for structured output prediction. We present a decomposition of the POEM objective that enables efficient stochastic gradient optimization. The effectiveness and efficiency of POEM is evaluated on several simulated multi-label classification problems, as well as on a real-world information retrieval problem. The empirical results show that the CRM objective implemented in POEM provides improved robustness and generalization performance compared to the state-of-the-art.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Counterfactual Risk Minimization: Learning from Logged Bandit Feedback

We develop a learning principle and an efficient algorithm for batch learning from logged bandit feedback. This learning setting is ubiquitous in online systems (e.g., ad placement, web search, recommendation), where an algorithm makes a prediction (e.g., ad ranking) for a given input (e.g., query) and observes bandit feedback (e.g., user clicks on presented ads). We first address the counterfa...

متن کامل

Counterfactual Risk Minimization

We develop a learning principle and an efficient algorithm for batch learning from logged bandit feedback. Unlike in supervised learning, where the algorithm receives training examples (xi, y ∗ i ) with annotated correct labels y ∗ i , bandit feedback merely provides a cardinal reward δi ∈ R for the prediction yi that the logging system made for context xi. Such bandit feedback is ubiquitous in...

متن کامل

Counterfactual Learning from Bandit Feedback under Deterministic Logging : A Case Study in Statistical Machine Translation

The goal of counterfactual learning for statistical machine translation (SMT) is to optimize a target SMT system from logged data that consist of user feedback to translations that were predicted by another, historic SMT system. A challenge arises by the fact that riskaverse commercial SMT systems deterministically log the most probable translation. The lack of sufficient exploration of the SMT...

متن کامل

The Self-Normalized Estimator for Counterfactual Learning

This paper identifies a severe problem of the counterfactual risk estimator typically used in batch learning from logged bandit feedback (BLBF), and proposes the use of an alternative estimator that avoids this problem. In the BLBF setting, the learner does not receive full-information feedback like in supervised learning, but observes feedback only for the actions taken by a historical policy....

متن کامل

Counterfactual Learning for Machine Translation: Degeneracies and Solutions

Counterfactual learning is a natural scenario to improve web-based machine translation services by offline learning from feedback logged during user interactions. In order to avoid the risk of showing inferior translations to users, in such scenarios mostly exploration-free deterministic logging policies are in place. We analyze possible degeneracies of inverse and reweighted propensity scoring...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of Machine Learning Research

دوره 16  شماره 

صفحات  -

تاریخ انتشار 2015